
Infusing Software Engineering Technology into Practice at NASA 
 

Thomas Pressburger 
NASA Ames Research Center 

Moffett Field,CA 
Tom.Pressburger@nasa.gov 

 
Martin S. Feather 

Jet Propulsion Laboratory 
California Institute of Technology, 

Pasadena, CA 
Martin.S.Feather@jpl.nasa.gov 

 
 

Michael Hinchey 
NASA Goddard Space Flight Center 

Greenbelt, MD  
Michael.G.Hinchey@nasa.gov 

 
Lawrence Markosian 

QSS Group, Inc. 
NASA Ames Research Center 

Moffett Field, CA 
lzmarkosian@email.arc.nasa.gov 

 
 

Abstract 
 

We present an ongoing effort of the NASA Software 
Engineering Initiative to encourage the use of 
advanced software engineering technology on NASA 
projects. Technology infusion is in general a difficult 
process yet this effort seems to have found a modest 
approach that is successful for some types of 
technologies. We outline the process and describe the 
experience of the technology infusions that occurred 
over a two year period. We also present some lessons 
from the experiences.  
 

1. Introduction 
 

Many obstacles impede the infusion of software 
engineering research results into the development 
community.   Practitioners cannot readily identify the 
emerging techniques that may benefit them, and cannot 
afford to risk time and effort evaluating and trying out 
new techniques while there is uncertainty as to whether 
they will work for them [1]. 

This paper describes an ongoing effort conducted 
by a software engineering research infusion team 
established by NASA’s Software Engineering 
Initiative to help overcome obstacles to research 
infusion.    The team first identifies and assesses 
software engineering research relevant to NASA’s 
software development activities.  This includes 
research products from NASA research, NASA-funded 
research at universities and in industry, and research 
products external to NASA, which includes leading-
edge commercial products. 

Next, the team identifies channels to reach the 
NASA software practitioners who might benefit from 
these products.   These channels are used to publicize 
the research techniques among NASA and its 
contractors’ software development teams.   Then, 
collaborations are brokered between NASA software 
engineers and the technology providers.   That is, 
guidance is provided during the proposal development 
process.   Proposals, prepared by the intended users, 
rather than the technology providers, are evaluated by 
the research infusion team.   

Winning proposals are funded in part by dedicated 
NASA funding. This funding is for technology 
introduction risk reduction: licenses, training, and 
reporting. During the period of the collaboration 
(typically six months), the research infusion team 
tracks progress and intervenes, when needed, to help 
overcome obstacles.    Finally, the team extracts 
lessons learned to sharpen the following year’s 
research infusion effort [2]. 
 

2. Infusions to date 
 

To date, 14 research infusion collaborations have 
been funded, exploiting a wide range of software 
engineering technologies oriented towards software 
assurance (this focus, since broadened, was initially 
part of the team’s charter, and a requirement of our 
funding organization).    

Technology categories have included: 
requirements specification and analysis, software 
architecture and evaluation, source code analysis and 
defect detection, and software process improvement.   
Target projects have included flight software, ground 



software, Space Station payload software and Space 
Shuttle software. 

Sections 2.1 to 2.9, inclusive, briefly describe 
each of the nine collaborations to date that have 
completed and submitted their final reports, along with 
that collaboration’s objectives, what happened, impact 
on the project, and success criteria.   For more details 
on each of them, see 
http://ti.arc.nasa.gov/researchinfusion/ Section 3 
discusses criteria on which we evaluate our success, 
and Sections 4 and 5 discuss lessons learned and 
conclusions. 
 
2.1 ARC: “On Orbit Software Analysis” using C 
Global Surveyor 
 

This project applied the source code analysis tool 
C Global Surveyor (CGS), a research tool developed 
within the Automated Software Engineering group at 
NASA Ames (ARC) under the Intelligent Systems 
program of Computing, Information, and Computing 
Technologies, to a payload software module for the 
International Space Station (ISS).  The tool analyzes C 
programs to find dead code and memory access errors: 
de-references of null pointers and out-of-bounds array 
accesses, and in some cases uninitialized variables.  
The main benefits expected of applying the tool were 
finding errors in the software and to give feedback to 
improve the tool. 

The tool reports on the code by classifying 
operations as green, orange, or red. Green operations 
never result in a runtime error of the above types. Red 
operations always result in a runtime error. Orange 
operations are those for which the tool cannot 
determine one way or the other whether that operation 
would cause a runtime error (commonly referred to as 
“warnings”). An issue with such analysis tools is their 
scalability and the precision of their analysis. CGS was 
designed to run quickly on relatively large amounts of 
code and to be precise about green operations; that is, 
it categorizes relatively few error-free operations as 
orange. It is probably less precise, though much faster, 
than PolySpace Verifier, another static analysis tool, 
about red operations; that is, operations that always 
cause errors might be classified by CGS as orange.  
The designers of CGS claim that its purpose is to do a 
complete coverage analysis of a software system to 
quickly narrow down the operations that need to be 
analyzed or tested further to determine whether they 
can cause an error. This follows because it was 
designed to be precise about which operations are 
green; thus, the amount of code for which further study 
is required will be minimized.   

The research infusion team had somewhat 
mischaracterized CGS’s purpose as to flag errors in 
software, which requires the tool to be more precise 
about which operations are red. CGS had been applied 
to, and specialized in some ways for, Mars Pathfinder 
software and achieved 80% precision on it; that is, 
80% of the operations were classified as red or green. 
This collaboration was something of an experiment to 
see if the tool could provide benefit for the analysis of 
other flight software. 

The tool turned out to be about 50% precise on 
the module, as it had a much different architecture 
from that of Mars Pathfinder. If the tool were 
enhanced to deal with certain features of the C 
language and the application, the precision would have 
been about 90%.  The project found its user interface 
cumbersome. 

There were three important positive outcomes 
from the collaboration.  First, dead code and an 
uninitialized variable were found in the module.  
Second, feedback was given to the CGS developers 
about new capabilities that the tool required to analyze 
certain features of C and handle this flight software.  
Third, serendipitously, because of his involvement in 
the collaboration, one of the CGS developers decided 
to apply another tool to the module which pinpointed a 
memory leak that had been suspected by the project.  
 
2.2 GSFC: “GSFC FSB Application of Perspective-
Based Inspections” 
 

The goal of this collaboration was to produce 
Flight Software Branch (FSB) process standards for 
software inspections which could be used across three 
new missions within the FSB.  The standard was 
developed  by Dr. Forrest Shull (Fraunhofer Center for 
Experimental Software Engineering, Maryland) using 
the Perspective-Based Inspection approach, (PBI 
research has been funded by NASA Software 
Assurance Research Program (SARP) 
http://www.ivv.nasa.gov/forresearchers/osmasarp/osma
sarp.php), then tested on a pilot Branch project.  
Because the short time scale of the collaboration ruled 
out a quantitative evaluation, it would be decided 
whether the standard was suitable for roll-out to other 
Branch projects based on a qualitative measure: 
whether the standard received high ratings from 
Branch personnel as to usability and overall 
satisfaction.   

The project used for piloting the Perspective-
Based Inspection approach was a multi-mission 
framework designed for reuse. This was a good choice 



because key representatives from the three new 
missions would be involved in the inspections. 

The perspective-based approach was applied to 
produce inspection procedures tailored for the specific 
quality needs of the branch.  The technical information 
to do so was largely drawn through a series of 
interviews with Branch personnel. The framework 
team used the procedures to review requirements. The 
inspections were useful for indicating that a 
restructuring of the requirements document was 
needed, which led to changes in the development 
project plan.  

The standard was sent out to other Branch 
personnel for review. Branch personnel were very 
positive. However, important changes were identified 
because the perspective of Attitude Control System 
(ACS) developers had not been adequately 
represented, a result of the specific personnel 
interviewed. Further iterations past the end of the 
collaboration resulted in draft Branch inspection 
standards for requirements and code which are on 
track to be baselined. 
 
2.3 JPL: “Finding Defect Patterns in Reused Code” 
using Orthogonal Defect Classification 
 

This effort used Orthogonal Defect Classification 
(ODC) to characterize defect reports for code that will 
be reused in mission-critical ground software.  The 
application of ODC to NASA projects has been 
previously funded by SARP.  

The goal was to identify patterns of defects prior 
to reuse of the code, and to successfully infuse ODC 
into a project. ODC, as adapted for NASA by the 
researchers, characterizes anomaly reports using four 
attributes: Activity, Trigger, Target, and Type. 

There were several groups of players in this 
project: Software Quality Assurance (SQA), JPL’s 
Software Quality Initiative (SQI), Dr. Robyn Lutz 
(JPL, Iowa State University), and of course the ground 
software project.  Dr. Lutz worked with the project to 
customize the classification entries. The original idea 
was to have the project itself learn to do the 
classification and analysis of anomaly reports on the 
software.  However, the funding for the collaboration 
was late, the project entered a busy period, and there 
was a JPL reorganization,  so instead people in SQA 
and SQI were taught the technique, and, with help 
from the project, classified the anomalies.  Dr. Lutz 
did the analysis and reported the findings to the 
project. Infusing ODC into the SQA and SQI 
organizations was an unexpected benefit of the 
collaboration. 

The project was satisfied with the results of the 
ODC analysis.  Though the ground software project 
was not continued, so the software was not reused, the 
software whose anomalies were analyzed was put into 
operation, and the analysis results were to be used to 
direct its maintenance.  The same development team 
used on another project an ODC analysis which 
indicated process problems that the team had expected.  

One factor that helps introduce the use of ODC is 
the use of a bug tracking database that is compatible 
with ODC classifications; for example, one that has 
pulldown menus so that the classification can be done 
easily when the anomaly is reported, rather than later 
when it is more difficult to decipher the anomaly 
report. Requirements for such a capability have been 
added to JPL’s next generation problem reporting 
system. 
 
2.4 JSC: “Can CodeSurfer Increase Inspection 
Efficiency?” 
 

CodeSurfer is a commercial tool from 
Grammatech, Inc. for browsing C code.  It provides 
lists of variables and constants used or set by 
functions, call graphs, pointer analysis, indications of 
dead code, etc. The objective of this project was for 
the Software Assurance organization to apply the tool 
during the inspection phase of an International Space 
Station (ISS) software component, to see if the tool 
made the inspections more time efficient and/or more 
productive; that is, more defects were found.  Because 
the funding arrived late, and the acquisition took 
longer than anticipated, the window for the inspection 
phase of the module was missed.  It was decided to 
apply CodeSurfer to the component anyway, as an 
experiment to compare with previous inspection 
results.  Also, CodeSurfer was applied during 
inspection of another ISS component. 

The results show that the time required for doing 
an inspection using CodeSurfer is reduced from that 
for a manual inspection, and the inspection is more 
productive.  The collaboration’s final report states that 
manual code inspection required 17 hours, and only 
12.25 hours with CodeSurfer.  Manual code inspection 
found 8 defects, whereas 18 (including 6 of the 8 
found manually) were found using CodeSurfer.  
Though the defects were all classified as minor, these 
are clear benefits.  However there were difficulties.  
There is a learning curve: the training helped, but the 
project suggested that the tool would be difficult to use 
if there was a long time between uses, so ideally, there 
should be people who use the tool more frequently.  
The tool required that the code compile with one of the 



compilers provided with the tool: this ran into 
problems because the code analyzed would only 
compile using a legacy compiler, so some adaptation 
was required.  Also, Software Assurance did not 
always readily have all the required files. The vendor 
of CodeSurfer, GrammaTech, Inc., was responsive, but 
because of ITAR (i.e., export control) restrictions, the 
ISS code could not be sent to the vendor for their 
assistance.  The net effect was that setup time 
swamped inspection time.  Obviously, there is a 
learning curve, so setup time would be reduced in the 
future.  The research infusion team sees these as 
generic problems to be dealt with for code analysis 
tools. 

The summary impact is that the Software 
Assurance organization is evaluating continued use of 
CodeSurfer on C and C++ projects for reviews. They 
have demonstrated the tools to the engineers who 
developed the ISS components, and are interested in 
collaborating with other customers of Software 
Assurance in using the tool to troubleshoot software. 
 
2.5 MSFC: “Static Analysis of Flight Software” 
using Coverity SWAT and C Global Surveyor 
 

The objective of this effort was to apply two 
source code analysis tools to four flight software 
components, in order to find errors, and characterize 
the utility of the tools.  The components varied in 
maturity from the coding and unit testing phase to the 
maintenance phase.   

The two analysis tools were C Global surveyor 
(characterized above in Section 2.1) and Coverity, 
Inc.’s Software Analysis Toolset, SWAT (now called 
Prevent). The latter is a source code analysis tool for C 
programs that looks for certain types of errors, such as 
use of uninitialized variables, out-of-bounds indices 
(buffer overrun), dead code, and functions that should 
check their return value but don’t.  It does not claim 
complete coverage, in contrast to CGS, which does; 
that is, SWAT does not necessarily find all the errors 
of a particular type. 

A team from Marshall Space Flight Center 
(MSFC) was trained at Ames Research Center (ARC) 
in the use of CGS.  This resulted in a number of 
recommendations for the tool, similar to those found in 
the ARC collaboration (section 2.1).  The tool 
produced about 300 warnings for a couple of the 
modules; about 20% were analyzed, and no errors 
were found.  On the other hand, the technology 
developers reported that on one of the MSFC 
applications, CGS was 95% precise. An update to CGS 

that fixed some of the issues raised was delivered to 
MSFC, but it was not run again on their software.   

The Coverity tool was applied to the components.  
It flagged a total of 74 errors in 14 minutes.  Analysis 
of those errors by flight engineers resulted in no errors 
found in the most mature component, but 9 in the other 
components were considered errors that were 
registered to be fixed; four of these had escaped formal 
testing.  A usability issue was brought to the attention 
of Coverity. 

The project concluded that the Coverity SWAT 
tool thus had a low false alarm rate and fast execution 
times and was recommended for use in future projects’ 
software development process if the associated 
licensing costs can be afforded. 
 
2.6 USA: “USA Application of Perspective-Based 
Inspections” 
 

The Perspective-Based Inspection approach was 
applied by Dr. Forrest Shull in an ISS software 
development project at United Space Alliance (USA). 
The goal was to increase the quality of the product, 
and increase inspection efficiency over previously used 
techniques.   

Project personnel were interviewed to tailor the 
approach, and instruction was provided, with actual 
software inspected as part of the instruction.  Defects 
were found during that inspection, which was 
surprising because that software was reused from a 
previous version and hence thought to be defect free. 
Following the course, Perspective-based inspections of 
code were carried out, finding a major defect which 
had escaped previous inspections.  On a qualitative, 
subjective level, the response from the project team 
consisted of only positive comments.  

The experience was that less time was required 
per inspector, who also had a more structured focus.  It 
was noted that Perspective-Based Inspections required 
more inspectors than the project’s usual practice.   The 
approach was recommended as an optional practice at 
USA.  A kit was created to easily help craft 
perspectives for smaller projects. The project 
recommended the approach for larger projects. 
 
2.7 ARC: “Application of Software Cost Reduction 
(SCR) Tools and Methods to On-Orbit Crew 
Displays” 
 

The SCR technology, originated by David Lorge 
Parnas, and further developed at the Naval Research 
Laboratory (NRL), provides tools and a method for 
developing, simulating, and analyzing formal 



requirements specifications.  An SCR specification is 
represented in a tabular format (Parnas tables) and is 
based on a state-machine model.  In addition to tools 
for consistency checking to detect syntax and type 
errors, missing cases, unwanted non-determinism, and 
tools to check application properties, such as safety 
properties, SCR also supports rapid construction of 
graphical user interfaces (GUIs) that simulate the 
target system’s interface, allowing for simulation of the 
required system behavior based on the underlying SCR 
specification. 

The goal of this project was to apply SCR tools 
and methods to develop and validate a requirements 
specification of the display interface to an incubator. 
The incubator was to be a Space Station Biological 
Research Project (SSBRP) science payload.  

The SCR technology providers gave a three-day 
training course on the SCR tools and method at the 
NASA Ames Research Center (ARC) to the project 
members. Lack of availability of the tool on the 
preferred ARC platform at the time of the training 
meant that limited hands-on training occurred during 
that visit, though the tool was delivered shortly 
thereafter. Natural language incubator display 
requirements and use cases for its Flight mode were 
used as the basis for collaboration between the project 
members with the SCR technology providers.  The 
technology providers encoded some of the 
requirements as a formal SCR requirements 
specification; this took about two person-weeks. The 
specification described behavior for setting the 
chamber fan speed and a goal temperature based on 
user inputs.  The SCR technology providers had 
planned to give hands-on training on the GUI builder 
to the project members, but schedule conflicts 
prevented this.  The SCR technology providers 
provided tutorial materials and remote assistance 
resulting in the construction of a customized GUI for 
the incubator display.  The project members tested the 
constructed display GUI against the requirements and 
found its behavior consistent with the requirements.  

The project members reported that no errors in the 
original natural language requirements and use cases 
were uncovered in this process, though the SCR 
technology providers noted there was a lack of 
completeness and existence of ambiguity in the 
original natural language requirements that was 
reflected in the SCR specification.  An example of this 
is that it was not specified how the functions interacted 
or conflicted; e.g., what the required behavior should 
be when a new command is given before the previous 
command completes. 

The project members considered the use of the 
SCR technology successful in that the SCR 
requirements specification correctly captured some 
requirements of the Incubator Display.  It does not 
appear that the project members can develop SCR 
specifications unaided.  The project members 
recommended, and the technology developers agreed, 
that the SCR methods and tools should be used when 
the understanding of the software requirements is 
mature.  The project members concluded that the 
toolset is valuable for validating requirements prior to 
design, and made other recommendations regarding 
extensions to the SCR methods and tools which the 
technology providers said have been or could easily be 
implemented. 

 
2.8 IVVF: “Infuse CodeSurfer into NASA IV&V 
Process” 
 

As described above in Section 2.4, CodeSurfer is 
a commercial tool for browsing C and C++ code. It 
allows for visualization of data and control flow via, 
for example, call graphs, and forward and backward 
slicing.  It was previously employed at JSC where it 
was used during code inspections (see Section 2.4). 

The goal of the collaboration at NASA’s 
Independent Verification and Validation Facility 
(IVVF) was to apply the tool to analyze flight code for 
IV&V.  The original target software was not available 
in time, so software for a solar observatory was 
substituted.  The observatory software was about 1.5 
MB of C/C++ for C&DH, ACS, and instrument code. 
A delay was encountered by the tool not being able to 
ingest this software; this was eventually repaired in a 
new release of CodeSurfer.  The observatory software 
analysis task was transitioned to another contractor 
which ended the collaboration.  To add value to the 
collaboration, GrammaTech provided the infusion 
effort with the results of running its CodeSonar defect 
detection tool on the observatory software.  Because of 
the various changes in the collaboration, rigorous time 
and effectiveness comparisons with other tools and 
previous experience could not be obtained. 

CodeSonar identified several defects not identified 
by other tools or manual analysis.  It reported about 60 
defects and had a false alarm rate of about 50% which 
was in line with expectations.  The reported defects 
were analyzed using another tool, Understand for C++, 
to determine whether they were true defects or false 
alarms; this took about half an hour per defect, which 
would have been less if the integrated 
CodeSurfer/CodeSonar interface (which exists but was 
not provided) had been used. 



The project suggested that the people who will set 
up CodeSurfer to ingest the target software need to be 
familiar with compiler technology, and receive 
separate training, but users unfamiliar with compiler 
technology can readily become proficient in using 
CodeSurfer once it is set up on the target software and 
they are familiar with the platform.  The project said 
ease of adoption was enhanced by using the Unix 
version of CodeSurfer. 

The project recommended the continued use of 
CodeSonar, especially with the integrated interface 
with CodeSurfer. It also recommended CodeSurfer 
when the control and data flows are sufficiently 
complex, and the incurred setup time doesn’t swamp 
the analysis time. 

Despite changes in the prime IV&V contractor, 
CodeSurfer resides in the IVVF tools lab, and it is 
being used on another project. 
 
2.9 JPL: Application of SpecTRM at JPL’s 
Advanced Project Design Team (TeamX) 
 

SpecTRM is a tool, from Safeware Engineering 
Corporation, that provides for capture of requirements, 
assumptions, design, design principles, design 
rationale, hazards, risks and their linkages.  

The Jet Propulsion Laboratory (JPL) created the 
Advanced Projects Design Team (Team X) in April 
1995. This team produces conceptual designs of space 
missions for the purpose of analyzing the feasibility of 
mission ideas proposed by its customers. The 
customers often consist of principal investigators of 
design teams who aim to plan new mission proposals. 
The study takes one to two weeks (usually involving 3 
3-hour collaborative sessions) and the design is then 
documented in a 30 to 80-page report that includes 
equipment lists, mass and power budgets, system and 
subsystem descriptions, and a projected mission cost 
estimate. The study is then reviewed and summarized 
and an abbreviated report is also produced. There have 
been over 100 to date. 

Historically, rationale for design options and their 
risks have not been retained during the fast-paced 
Team X design sessions so it is not possible (for 
example) to subsequently investigate the sensitivity of 
the design to changes in the design parameters.  The 
goal of this infusion was to investigate the feasibility 
and benefit of using SpecTRM during Team X session 
to capture design rationale (options considered, the 
basis for making design decisions, and the hazards and 
risks associated with the decisions), to estimate the 
benefits of doing so, and to determine the changes 

needed to accommodate SpecTRM’s use if it were 
decided to be beneficial. 

This infusion used an aerobot mission to Titan as 
its TeamX test case.  The process carried out was for 
members of TeamX to provide the technology provider 
with information about their work during the design 
session, so that the provider could enter the data into 
SpecTRM.  (This process was followed since  
purchase and training in the use of SpecTRM was not 
included in the proposal.) The provider organized the 
information in SpecTRM as system-level goals, 
requirements, assumptions, constraints, design 
principles, action items, hazards, and then linkages 
among them.  The data captured was a subset of the 
information captured in the TeamX directory.  The 
project claimed that the biggest benefit was that these 
attributes were systematically described and traceable. 

The project described conditions and suggestions 
for the integration of SpecTRM into the TeamX 
process. For example, it would help to have a 
knowledge base of previous designs and their 
rationales.  Also, the systems engineer on TeamX 
should be trained in the tool. Another suggestion is to 
build an interface to SpecTRM that provides TeamX 
members the same format for entering information as 
they use now; also suggested was a concurrent, multi-
user SpecTRM. 

A journal paper describing the SpecTRM/TeamX 
experience is in progress. The technology assistant was 
hired at JPL, so expertise in SpecTRM will be readily 
available at JPL. 

As far as adopting SpecTRM, the TeamX 
management will decide what its priorities are and how 
much funding to allocate to each priority.  If it turns 
out that design rationale capture is a priority and 
funding is allocated to it, SpecTRM is one of the 
options TeamX will consider.  
 

3.  Success Criteria 
 
From the outset, it was our desire that the long-term 
success criteria would be that the research products 
used in the collaborations become adopted for future 
software development by the proposing teams and/or 
their organizations. The need for patience (“long term 
success”) stems from the fact that we are often dealing 
with mid TRL-level (Technology Readiness Level) 
research products that may lack productization, and 
hence will require further development before being 
ready for mainstream adoption by flight projects. Even 
for high TRL products there are factors that constrain 
immediate adoption. For example, a high TRL 
commercial product may have a high license fee, 



accommodation of which requires advance budgetary 
planning. The timescale of our efforts motivated us to 
seek several short-term success criteria that would be 
indicative of progress towards our long-term one, as 
follows: 

1. The success criteria of the collaboration projects 
funded are met.  This includes a positive rating for 
each product on the evaluation criteria metric. 

2. The research product is adopted by the 
collaborating software development team for 
current use. 

3. The research product is adopted by the 
collaborating software development team for 
current use 

4. The software development team using the product 
provides feedback, including performance data, to 
the research team to guide future development of 
the product. 

5. Six months after the funded collaboration period 
the research product is still being used by the 

development project or by a successor 
development project. 

6. Independent of the success of the collaborations, 
“lessons learned” regarding the challenges and 
success factors for software development 
technology infusion within NASA. 

Also relevant to judging the impact of the 
collaborations is the penetration factor (PF) used for 
Software Assurance Research Program quarterly 
reviews.   Only the two highest PFs are of interest to us 
in the research infusion initiative: 

PF 8: Data passed back to project; 

PF 9: Results actually used by the project. 

Table 1 summarizes each of the nine infusions that 
have  completed as of the time of writing.   It shows 
the penetration factor of each project, a tick (!) in the 
relevant column indicates that corresponding criterion 
(1 to 6) above is satisfied.  A clock symbol (") 
indicates that it is anticipated that this criterion will be 
satisfied shortly (within the 2006-2007 timeframe).  A 
star (!) indicates that the criterion will be achieved 
only conditionally on the cost of the tool. 

Project PF 1 2 3 4 5 6 Impacts 
ARC - CGS on ISS payload 
software 

 
9 

    
!!!! 

  
!!!! 

Found 2 errors to be fixed. 
Useful feedback to the CGS developers.  

GSFC - PBI in Flight 
Software Branch 

 
9 

 
!!!! 

 
!!!! 

 
!!!! 

 
!!!! 

 
!!!! 

 
!!!! 

PBI led to changes in the projects’ 
development plan.  Expected rollout of 
PBI in FSB standards. 

JPL - ODC on ground 
software 

 
9 

 
!!!! 

 
 

 
!!!! 

 
!!!! 

 
 

 
!!!! 

Training occurred in several JPL 
organizations.  ODC led to several 
recommendations that will be used in 
project maintenance phase. 

JSC - CodeSurfer for 
Inspections of ISS software 

 
9 

 
!!!! 

 
!!!! 

  
!!!! 

  
!!!! 

Found 12 additional (minor) defects.  
Tool is continuing to be evaluated. 

MSFC - SWAT & CGS on 
Flight Software 

 
9 

 
S 

 
!!!! 

 
!!!! 

 
!!!! 

 
"""" 

 
!!!! 
 

Useful feedback to the CGS developers.  
SWAT found 9 defects worth fixing in 
the software, some of which had 
escaped formal testing. 

USA  - PBI on ISS Software  
9 

 
!!!! 

 
!!!! 

 
!!!! 

 
!!!! 

 
!!!! 

 
!!!! 

Found 6 “major” defects, several of 
which had escaped previous inspections 
and/or occurred in reused code.   Will 
continue to be used and was 
recommended as an optional process. 

ARC - SCR on ISS payload 
software 

 
8 

 
!!!! 

   
!!!! 

  
!!!! 

Good exposure to the technology. 

IVVF – CodeSurfer/Sonar 
on Flight Software 

 
9 

 
!!!! 

 
!!!! 

 
!!!! 

 
!!!! 

 
"""" 

 
!!!! 

CodeSonar found non-trivial defects, 
and its use is recommended. 

JPL - SpecTRM to capture 
mission design rationale 

 
8 

 
!!!! 

   
!!!! 

  
!!!! 

Adoption considerations were 
explored. Journal article in progress. 



4. Some Lessons Learned 
 
The completed research infusion projects that have 
completed have raised a number of issues, confirmed 
some expectations, and debunked others: 

•  Some developers are not proficient at 
research-oriented activities and need guidance and 
oversight. These teams are likely to benefit from more 
detailed pro forma documentation or templates (kick-
off meeting agenda, project plan, reports).  For specific 
categories of tools (such as source code analysis tools) 
we can provide very detailed templates. They also 
require frequent oversight (a) to ensure that 
communication is occurring between developers and 
technology vendors and (b) to ensure that the schedule 
is being followed.  Not all the projects require this 
level of support but it is likely to benefit Research 
Infusion by promoting uniform, higher-quality 
collaboration practice. 

•  There are various answers to the question 
“What is the next step”—from research infusion to 
technology transfer.  A general solution is unlikely.  
Some technologies are readily integrated and 
generalized into a parent organization’s existing 
processes (for example, Perspective-based Inspections 
at GSFC)—they are modifications to existing 
processes.  Various other technology-specific 
approaches may be appropriate; e.g., PBI may be 
supported by the Software Engineering Initiative’s 
Training strategy. 

•  Tighter qualification of technology/project 
combination may be needed. One of the source code 
analysis tools used at ARC and MSFC had previously 
been successfully applied to NASA software.  
However, the software that was the subject of the 
infusion study had different technical features to the 
previously successful software applications, and it 
turned out that the analysis tool did not transition well 
to the software with different features.  Also, the 
appropriate lifecycle context and purpose for the tool 
(in this case) may not have been clear to the 
development teams. 

•  Sometimes project personnel already have in 
mind technologies they are interested in and the 
research infusion effort serves predominantly to 
provide seed money so that the desired collaboration 
can take place, and track its progress once initiated.. 
This was the case with the JPL/SpecTRM 
collaboration.  In the case of an ongoing collaboration, 
the research infusion team brokered the collaboration 
between the developers and technology providers. 

•  Collaborations’ project plans should 
explicitly include an iterative approach to technology 
application, scaling up with each iteration. 

•   Leading-edge tools sometimes have 
problems, e.g., needing specialized skills for set-up.  
Technology providers have made efforts to 
compensate. 

•  To succeed, training and continued support 
are needed. For example, USA received onsite training 
on applying PBI technology to its own application.  
This reduced risk and cost as well, since part of the 
target application was used in the training session.  
“The most successful way to do tech transfer is to put a 
member of the [technology vendor team] on the 
development team”1  

•  The profile of effort required to learn new 
technologies varies with the technology. For example, 
a few days may be enough to learn a software 
browsing tool such as CodeSurfer, or to apply SCR 
tools to an existing SCR specification. But committed 
blocks of time and more resources and suitable 
background may be required to become facile with 
aspects of the technologies, such as SCR specification 
development, with the expectation that the payoff 
(such as being able to take advantage of applying the 
SCR tools) would be worth the effort. 

•  Busy researchers and project members may 
have scheduling pressures that take precedence over 
infusion studies, which may lead to significant delays 
in the infusion projects. 

•  NASA is a dynamic environment. It is 
important to consider the loss of organizational 
memory as a risk up front and plan for its mitigation. 
The application that SCR was applied to was stopped, 
and its employees dispersed, so expertise in SCR was 
dispersed as well. The contractor PI using CodeSurfer 
lost its prime status so work on analyzing the solar 
observatory was transferred to a new contractor not 
necessarily using CodeSurfer; however in this case, the 
tool remains in the IVVF tools lab and is still in use at 
the original PI contractor on other projects.  

•  If the lead-time between technology proposal 
and beginning the project is too great, the necessary 
personnel may be lost, or it may be impractical, or 
unbeneficial, to use the technology at this stage of the 
development.   We have had two projects which 
needed to change and use alternative software, and 
another project which it was no longer feasible to run 
as a result of this delay.   In an attempt to counteract 
this, the 2007 process for soliciting proposals and 

                                                           
1 Matt Barry, JPL, (paraphrased) communication to the 
authors. 



choosing among them will begin later in the year, 
nearer to the time that funding will be available. 
 

5. Conclusions 
 

The overall impact and benefits of research 
infusion to space systems are several: previously-
inaccessible software assurance technologies have 
been successfully infused; some have been adopted for 
inclusion in organizations’ development practice; 
several have continued to be used for some time 
following the end of the collaboration; the software 
development team has provided feedback to the 
technology developers; and, lessons learned have been 
identified regarding the challenges and success factors 
for software development within NASA.    

Overall, Research Infusion’s set of completed 
collaborations supports the hypothesis that with 
selection of appropriate technologies, matching of 
technologies with software development teams, and 
guidance and oversight, infusion of new software 
engineering technologies can be performed 
successfully on a minimal budget. Note however that 
the technologies considered in these efforts have been 
constrained to those that can be introduced within the 
context of existing software development practices. 
For technologies whose infusion would be more 
revolutionary, requiring a radical shift in existing 
practices (e.g., an approach that requires formal 
specification of the entire software system, or a new 
programming language that is incompatible with 
existing platforms and personnel skills), significant 
additional factors that we have not had to address will 
likely be involved. 
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